**PURPOSE OF STUDY**

Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history’s most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

**Aims **

The national curriculum for mathematics aims to ensure that all pupils:

- become
**fluent**in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately. - become
**fluent**in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately. **reason mathematically**by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language- can
**solve problems**by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils’ understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Useful Links: Valley Gardens Maths and English Intervention

#### CURRICULUM MAPS

#### Autumn 1

Number and place value.#### Autumn 2

Addition + Subtraction#### Assessment

Test + Work on these topics.Test is stage appropriate

#### Autumn 1

Number and place value.#### Autumn 2

Addition + Subtraction#### Assessment

Test + Work on these topics.Test is stage appropriate

#### Autumn 1

Fractions, Decimals, Percentages Integers, Powers,#### Autumn 2

Number Revisions#### Assessment

Level appropriate test and work on these topics#### Autumn 1

Fractions, Decimals, Percentages Integers, Powers,#### Autumn 2

Number Revisions, Roots#### Assessment

TA based on work in these topics#### Spring 1/2

Number and Plane Value x ÷ by 10,100,1000, negative numbers, rounding X and ÷ + / - MeasuresFractions – including decimals and percentages

Geometry – 3-D shapes + nets angles rectangles and polygons

#### Assessment

assessment 3 and 4 as per sow#### Spring 1

Number + Place ValueStatistics mean – line graphs

Number + Calculation x ÷ Measurement

Geometry – properties of shapes including triangle geometry

#### Spring 2

FractionsRatio and proportion

Algebra

Geometry - transformations

#### Assessment

Assessment 3 and 4#### Spring 1/2

Handling data, place value and calculations, Algebra – sequences, functions and graphsTransformations (rotations, reflection, enlargement)

Algebra – Equations and formulae

#### Assessment

QCA 8 paper, non condensed QCA 7 paper#### Spring 1

Probability Equations, formulae and graphsGraphs and sequences

Coordinates, measures including speed

Transformations

#### Spring 2

Integers, Powers, RootsRatio and proportion

Geometrical reasoning including lines, angles and shapes

#### Assessment

Assessment 3#### Summer 1

Handling data, Solving problems (ratio and proportion), number and measures, algebra (sequences, functions, graphs), Shape Space and measure (transformations)#### Summer 2

Handling data, probability, equations, formulae and graphs, Geometrical reasoning including transformations#### Assessment

Number properties 2Area

Volume

Problem solving in context

#### Summer 1

Handling data, Solving problems (ratio and proportion), number and measures, algebra (sequences, functions, graphs), Shape Space and measure (transformations)#### Summer 2

Handling data, probability, equations, formulae and graphs, Geometrical reasoning including transformations#### Assessment

Number properties 2Area

Volume

Problem solving in context

#### Summer 1

Handling data, Solving problems (ratio and proportion), number and measures, algebra (sequences, functions, graphs), Shape Space and measure (transformations)#### Summer 2

Handling data, probability, equations, formulae and graphs, Geometrical reasoning including transformations#### Assessment

Number properties 2Area

Volume

Problem solving in context

#### Summer 1

Handling data, Solving problems (ratio and proportion), number and measures, algebra (sequences, functions, graphs), Shape Space and measure (transformations)#### Summer 2

Handling data, probability, equations, formulae and graphs, Geometrical reasoning including transformations#### Assessment

Number properties 2Area

Volume

Problem solving in context